轨道交通的暖通设计有哪些常见问题?听听专家怎么说发表时间:2020-05-28 16:36 2020年,在新基建政策的部署下,轨道交通行业再次迎来高速发展,但是轨道交通在安全、节能方面所遇到的挑战依然严峻,如何进一步降低高居不下的电耗,如何在保证性能的同时,实现轨道交通的绿色发展,成为业界关注和突破的焦点。那么轨道交通的暖通设计有哪些常见的问题需要注意呢?让我们来听听专家怎么说。 轨道交通的分类和特点 轨道交通可按不同角度分类,按所处的空间位置可分为“地铁”和地面铁路;按所用轨道的轻重可分为“轻轨”和“重轨”。一般来说,运送客流量大的走地下,称为地铁;运量小、主要走地面的为轻轨。
![]() 地铁站空调设计特点 车站空调属于舒适性空调的设计范畴。轻轨站位于地面,其空调设计可按照普通车站的设计参数和条件进行设计,这里不再赘述。而地铁基本上与地面环境隔绝,室外大气的温、湿度只对车站空调负荷存在间接的影响。其空调设计参数的选取和空调负荷的计算与常规舒适性空调不同。 空调设计温度 地铁站内除工作人员外,其它人员只做短暂停留。为节约能源,只考虑乘客有一个短时间的舒适环境即可。由于人体对环境温度有明显感觉的温差在2℃以上,乘客由地面进入车站,需要经过一个由外界环境温度逐渐过渡到站内温度的过程,这样人体才不会产生忽冷忽热的感觉。至于站内管理用房,由于工作人员长时间在内工作,可取常规设计温度tn=24~27℃。其它设备用房可根据运行和工艺要求来确定设计温、湿度值。 空调负荷组成与计算 列车本身及列车空调的散热约占74%,照明、广告灯箱的散热约占6%,设备(如自动扶梯、售票机等)的散热约占5%,乘客和工作人员的散热约占15%;地铁围护结构周围的土壤能吸收大量的热量并储蓄起来,夏蓄冬放,以调节地铁内空气的温度。根据一些资料记载,此部分热量占地铁产热量的25%~40%。列车本身及列车空调排放的热量扣除传入地铁周围土壤的热量之外,剩余部分由隧道通风系统排到室外。车站内的空调负荷包括站内乘客和工作人员散热、照明散热和其它设备散热量。
站内气流组织 车站公共区(也称车站大系统),一般比较狭长,如果只在车站一端设置风柜,那么单条送、回风管就会过长,各个送风口难以实现阻力平衡,送风不均匀。为了避免这一现象,应该在车站两端设置风柜,各自承担大系统空调负荷的1/2,对工作区进行均匀送风。以广州地铁站为例,因为采取集中控制,单一区域空调面积大,所以一个区域的送风量就高达20多万,为了实现各送风口的阻力平衡,确保出风口的余压,除了对风柜本身的强度和控制要求较高之外,更重要的是需要在进行风管设计时,尽量少考虑采用风阀调节(容易产生“拨一发而动千钧”的现象,很难调节),而应该合理设计风管尺寸,依风管本身实现自平衡。目前国际上通用的风道计算方法一共有四种:静压复得法、假定速度法、等摩阻法和T算法,对于车站空调这种需要变风量设计的场合,静压复得法是最佳的计算方法。 ![]() 车站设备管理用房(也称车站小系统),具有工作时间固定(24小时运行),空调负荷较稳定的特点。小系统的空调负荷只占大系统设计值的一小部分,为了管路布置方便,小系统的风系统可以和大系统共用。但因为大系统的空调负荷具有明显的不同时段,峰谷时水系统流量变化大,所以小系统的水系统应该独立设置。
轨道交通站可选取集中供冷式冷源和各站独立冷源两种方式。
![]() 各站点独立冷源和集中供冷的优缺点互补,因为供冷规模较小,所以采用常规冷水机组供冷即可。这种冷源形式增加了各个站点的机房建设,按照国内轨道交通车站的一般规模来计算,机房面积在100~150平方米左右。
空调设备的选择 因为轨道交通空调主机容量往往是按远期负荷考虑的,具有一定的设计余量,而且一年四季气候条件以及每天不同时段的客流量波动较大,所以国内地铁目前常用螺杆机作为空调主机,主要是考虑到站内空调的部分负荷运行工况,必要的话还可以采用变频水泵进行变频调节。
隧道在不同的时间,也要求有不同的通风方式。
简称为车站大系统。由于车站狭长,为避免送、回风管距离过远,系统的空调风柜应布置在车站两端,分别负担车站公共区总负荷的一半,对公共区进行均匀送风。 ![]() (2)车站设备管理用房的空调通风系统 简称为车站小系统。小系统的进、排风道应与大系统合用,但水系统应与大系统相对独立。广州地铁一号线各车站均采用自备冷源,制冷机组的控制为即可满足大、小系统共同运行时的冷负荷,又可满足小系统单独运行时的冷负荷。
根据地铁的建筑特点,造成地铁内部对室外温度影响的延迟性,相对稳定,根据有关资料显示:列车本身及列车空调的散热约占74%,照明、广告灯箱的散热约占6%,设备(如自动扶梯、售票机等)的散热约占5%,乘客和工作人员的散热约占15%;地铁围护结构周围的土壤能吸收大量的热量并储蓄起来,夏储冬放,以调节地铁内空气的温度,根据一些资料记载,此部分热量占地铁产热量的25%∽40%。环控设计采用常规闭式系统,总散热量扣除传入地铁周围土壤中的热量外,基本为车站的空调负荷;环控设计采用常规开式系统,列车本身及列车空调的散热量扣除传入地铁周围土壤中的热量外,其他部分的热量通过隧道通风系统传到室外,而车站的空调负荷仅包括车站内乘客和工作人员散热量、照明散热量及设备散热量。 地铁站的空调属于舒适性空调。站内虽然人员密集,但逗留时间较短,同时地铁空调负荷很大,为了节约能源,只考虑乘客由地面进入车站的一个“暂时舒适”环境即可。而人体对温度变化有明显感觉的温差在2℃以上。这样乘客从地面进站到上车,经历一个环境温度逐渐降低的过程,32.5℃→30℃→29℃→27℃,既是一个较舒适的过程又是一个较卫生的过程,没有突冷的感觉;车站的一些管理用房,由于管理人员长时间在里面工作,取tn=27℃;车站的一些设备用房据工艺要求确定室内温度取值。 由于地铁是一个人员密集的地下公共建筑,且地下车站对外连通的口部相对来说比较少,因此地下铁道及区间隧道的机械事故通风至关重要。
地铁排烟系统,排烟风机及烟气流经的辅助设备如风阀及消声器等,应保证在150℃时能连续工作1h。
文章分类:
暖通资讯
|